

International Journal of Current Research and Academic Review

ISSN: 2347-3215 (Online) Volume 13 Number 9 (September-2025)

Journal homepage: http://www.ijcrar.com

doi: https://doi.org/10.20546/ijcrar.2025.1308.008

Forage Availability and Nutrient Quality of Common Warthog (*Phacochoerus africanus*) in Gassi and Haro Aba Diko Controlled Areas, Western Ethiopia

Alemayehu Edossa^{1*}, Afework Bekele² and Habte Jebessa Debella²

¹Department of Biology, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia ²Department of Zoological sciences, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia

Abstract

Study on forage availability and nutrient quality of common warthog (Phacochoerus africanus) was conducted in Gassi and Haro Aba Diko controlled areas, Western Ethiopia in 2018-2019. Forage availability was determined using feeding quadrat method whereas seasonal variations of nutrient quality of common warthog were measured using clipped plant samples and fecal droppings. Dietary and fecal contents of C, N, P, neutral and acid detergent fiber were analyzed. Crude protein content was measured using Kjeldhal method. In HADCHA (Haro Aba Diko Controlled Hunting Area), 28 and in GCHA, (Gassi Controlled Hunting Area) 24 seasonally available forage species contributed ≥ 1% in the diet of common warthog during the wet and dry seasons. The top four seasonal availability proportion forage species of both study areas showed similarity in C. nlemfuensis, H. rufa, H. hirta and C. dactylon, but differed by Eragrostis spp. and D. abyssinica. The mean proportion of fecal and dietary nitrogen contents of common warthog showed significance difference (F1 15 = 35.02, P <0.05) and positively correlated (Spearman r = 0.31; P>0.05; N = 16) in both study areas. Neutral detergent fiber (NDF) content of feces of common warthogs was higher in HADCHA (74.28 ± 3.92) than in GCHA (71.01 ± 0.12) and revealed significant variation (F1 3 = 5.27, P <0.05). Therefore, a wider range of plant species were available in the diet of common warthog. Nevertheless warthogs foraged 1311 mg/100g and 1489.2 mg/100g dietary phosphorous concentration, which were below the minimum threshold level leading to high risk of sterility and population decline in both study areas. Dietary C, P, N, crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) of common warthogs regulated the entire metabolic activity of the animal and these were calibrated more in dietary than in the fecal dropping of the animals.

Article Info

Received: xx July 2025 Accepted: xx August 2025 Available Online: 20 September 2025

Keywords

Common warthog, dietary concentration, dry matter, fecal content, fiber; forage categories

Introduction

Seasonal variation in resource availability and other environmental conditions help animals to determine which habitat types to be used (Borger *et al.*, 2006). Availability of palatable forage species has an important effect on the diet preference of animals and permit animals to select a wider range of plant species with little or no risk of nutritional stress (Zweifel–Schielly *et al.*,

2012). Decrease in the availability of forage species results in the use of less desirable forage species (Anderson *et al.*, 2010), which elevate metabolic costs of locomotion and limits survivorship of the animal (Hanley and McKendrick, 1983). The proportion and number of plant species incorporated in the diet indicate the breadth of an animal's food niche and represent diet quantity (Gutbrodt, 2006; Butt and Turner, 2012). Diet content of nitrogen, carbon, phosphorous, crude protein, fiber

^{*}Corresponding author

content (neutral detergent fiber (NDF) and acid detergent fiber (ADF) indicate diet quality (Clauss et al., and Codron et al., 2007). Non-ruminant ungulates are more efficient in processing low quality food (high fiber content) than ruminants (Kartzinel et al., 2015). They compensate a less nutrient extraction of low-quality foods by foraging more such food items (Codron et al., 2007; Cromsigt et al., 2009; Codron et al., 2016). Due to this extent of food quality tolerance, non-ruminant ungulates use a wider variety of habitats than ruminants (Cromsigt et al., 2009; Kahana et al., 2013). On the other hand, ungulates directly speed up nutrient turnover for uptake by microbes and plants by excreting nutrients in the form of readily available (Metcalfe et al., 2014). Furthermore, they can influence nutrient yield by modifying the quality and quantity of plant debris available for decomposition indirectly (Hobbs, 1996; Metcalfe et al., 2014). Therefore, nutritional status of plants and plant eating animals is essential for wildlife population and their habitat management (Treydte et al., 2006).

Common warthogs show particular adaptation of high crowned teeth to its special dietary niche and long ingesting retention times (Clauss et al., 2007 and 2008). Hence, they are particularly efficient in fiber digestion like grazing ruminants. Thus, to obtain a nutritionally adequate diet and high mineral concentrations, they tend to forage on a variety of plant species (Dearing et al., 2000; Mphinyane et al., 2015). On the other hand, intake of N, P and C of common warthogs can be maximized to a far greater degree by foraging grasses in neglected glades than relative to surrounding plant communities (Augustine, 2004). A plant species, which is low in nitrogen may be high in digestible energy, whereas another species, may be high in sodium, but low in digestible energy (Lyons et al., 1999; Dearing et al., 2000). Foraging high protein and low fiber content not only optimize energy and nutrient intake, but also minimize retention time, thus increasing intake capacity (Zweifel -Schielly et al., 2012). Therefore, forage availability and nutrient quality of common warthogs were the major inquiries of the present study.

Materials and Methods

Description of the study areas

One of the eastern African countries, Ethiopia is rich in fauna and flora diversities. The experimental animal, common warthogs are commonly distributed throughout Gassi Controlled Hunting Area (GCHA) and Haro Aba

Diko Controlled Hunting Area (HADCHA) toward western side of the country. *Combretum- Terminalia*, open grassland and riparian forest characterized the study areas. Different Medium and large sized mammalian species are common in various parts of the study areas (Edossa *et al.*, 2020; 2021).

Gassi Controlled Hunting Area (GCHA)

Gassi Controlled Hunting Area (GCHA) is situated approximately 600 km west of Addis Ababa in the Oromia Regional State, Buno Bedelle Administrative Zone. Most of the study sites lie, along the Banks of the Dabena River of Meko and Dabo hanna districts. It is positioned in the southwestern part of Dabena Valley Forest (DVF), between 8° 15" and 8°52' 30" N latitude and $35^{\circ}55'$ 30'' and $36^{\circ}7'$ 15'' E longitude. The altitude ranges from 1538 to 1689 masl (Fig. 1). Miesso and Gassi rivers drain in Dabena River. Dabena Valley Forest (DVF) is located within the Didessa River subbasin. Dabus and Didessa Rivers are the first top two catchment area of Abay basin, the biggest drainage of the upper Blue Nile River Basin (Merid, 2002; Awulachew et al., 2007). Didessa and Dabus Rivers drain the southwestern part of the basin, and subsidize one third of the total flow of the Grand Ethiopian Renaissance Dam (Betrie et al., 2011), which is the highest sediment source of the Nile River (Ali, 2021). The study area was demarcated as a controlled hunting area in 2007 with an estimated total area of 24,000 ha that comprises Combretum-Terminalia woodland and, riparian forest (Edossa et al., 2020; 21).

Tropical savanna zone (kola) climatic condition characterizes study area and it receives a unimodal annual rainfall. The wet season is short and covers from June to October with the highest rainfall between June to August. The dry season is longer and extends from November to May. The average annual rainfall of the area from 2007 to 2017 was 1536.6 mm, with the highest mean monthly rainfall certified in August (370.6 mm) and the lowest in December (13.3 mm). The mean monthly maximum temperature documented was 32.3 °C in May and the mean minimum was 11.5 °C in December (Source: National Meteorological Agency of Ethiopia). Edossa *et al.*, 2020; 21).

Haro Aba Diko Controlled Hunting Area (HADCHA)

Haro Aba Diko Controlled Hunting Area is situated about 550 km west of Addis Ababa on the southern side of Addis Ababa in the Oromia Regional State, Buno

Bedelle Administrative Zone. It is positioned along the northeastern part of Dabena Valley Forest (DVF) between 8° 35′ 20″ and 8°45′ 55″ N latitude and 36° 15′ 45″ and 36°20′ 10″ E longitude. The altitude ranges from 1646 to 1720 masl (Fig. 2). The study area was demarcated in 2007 with an approximated total area of 53,841 ha that contains savanna woodland, and riparian forest. HADCHA is one of the controlled hunting areas in western Ethiopia which could be used as the forthcoming carbon sequestration center of the country (Edossa *et al.*, 2020; 21).

Tropical savanna zone (kola) climatic condition characterizes the study area and it receives a unimodal annual rainfall. The wet season is short and ranges from June to October with the highest rainfall between June to August. The dry season is longer and covers from November to May. The average annual rainfall of the area from 2007 to 2017 was 1434.1 mm, with the highest mean monthly rainfall documented in August (285.4 mm) and the lowest in December (15.9 mm). The average monthly maximum temperature was 35.2 °C recorded in May and the mean minimum was 12.3 °C certified in January (Edossa *et al.*, 2020; 21).

Methods

Forage availability analysis

Forage availability of common warthog was determined using feeding quadrat method (Grobler, 1983; Magome et al., 2008). In the feeding stations where common warthog foraged grasses and herbs, 1 x 1m quadrats were surveyed (Bullock, 2006). In shrubs foraging sites 1 x 10 m quadrats were analyzed as recommended by Greenwood and Robinson (2006). A total of 1152 quadrats were laid in the area where common warthogs were observed feeding plant materials and in the feeding sites were confirmed by scars of plant and fresh fecal deposit made by common warthog (Augustine, 2004; Krebs, 2006; Ahrestani et al., 2012). Feeding stations spaced 5 m apart for grass species, which were assumed to be independent (Macandza et al., 2004). For remaining forged plant species, quadrats were spaced at 15 to 20 m intervals in the feeding sites of the animal. Each day, 15 to 20 quadrats were surveyed and all plant species consumed by common warthog were collected (Macandza et al., 2004; Arsenault and Owen-Smith, 2008) and this was repeated every month of the study period. All of the plant species within each quadrat were identified and both recent and fresh grazing sites were noted. Fresh plant materials, which were cut during 2018

and 2019 dry and wet seasons of the study periods, pressed for the preparation of reference slides, seasonal nutrient quality measurement and identification purposes (Macandza *et al.*, 2004). From HADCHA, 45 and from GCHA 41 plant materials were identified as the diet of common warthogs. In the same way, 28 from HADCHA and 24 from GCHA plant species contributed $\geq 1\%$ in the diet of common warthog during the wet and dry seasons (appendix I)

Nutrient quality analysis

Seasonal variations of foraging quality of common warthogs were measured using plant materials, which were sampled seasonally during the wet and dry seasons of 2018 to 2019 study periods based on procedures mentioned earlier. The clipped plant samples were dried under shade and milled through a 0.75-mm screen (Treydte et al., 2006; Zweifel -Schielly et al., 2012). Fecal analysis was also used to get better information about common warthog's diet quality (Treydte et al., 2006; Ahrestani et al., 2012) because fecal analysis studies of plant fragments revealed which plant species were consumed by the animal (Stewart, 1967). A total of 320 fresh fecal samples, which were less than two days old each weighing about 70 g (Bekhuis et al., 2008) were collected during the wet and dry seasons of 2017and 2018 study periods and processed.

The content of NDF was measured after digestion with α-amylase and ADF were determined according to the Association of Analytical Communities (AOAC) International (Zweifel –Schielly *et al.*, 2012). Crude protein (CP) content was measured using Kjeldhal method and their concentration were estimated by multiplying the nitrogen concentration value by 6.25 (Buys, 1990; Gutbrodt, 2006; Ahrestani *et al.*, 2012). Phosphorus was determined by wet digestion and measured by a spectrophotometer (Codron *et al.*, 2005).Carbon composition was determined using a Carlo–Erba elemental analyzer (NCS 2500; Carlo–Erba, Milan, Italy). N, P, and C contents of plants and feces were used as total dry matter percentages (Treydte *et al.*, 2006).

Data analyses

Seasonal forage availability was calculated by dividing the number of microscopic slides in which the species was found by the total number of microscopic slides examined (Venter and Watson, 2008) at the Animal Biotechnology Laboratory of Holeta National Biotechnology Center. The differences in seasonal dietary availability of different forage categories to the diet of common warthog were calculated using Chisquare test (Muposhi *et al.*, 2014). The neutral detergent fiber (NDF), acid detergent fiber (ADF) and total nitrogen contents of all fecal samples and plant materials were analyzed at the Nutrition Laboratory of Holeta Agriculture Research Center. Crude protein (CP). Phosphorous and organic carbon contents of foraged plants and feces were analyzed at the Nutrition Laboratory of Ethiopian Public Health Institute Addis Ababa. Seasonal variations in diet and patterns of diet changes were tested using a Chi-square test and One – way ANOVA (Muposhi *et al.*, 2014).

Results and Discussion

In GCHA, graminoids were the most frequently available forage species of common warthog population during the wet season (87.1. $\% \pm 7.21$) and during the dry seasons (83.3% ± 5.99) (Fig. 3). Herbs formed 10.1% ± 0.11 during the wet season and 16.7% ± 1.27 during the dry season available foraged species. Shrubs and climbers were the less available foraged species during both seasons. Hence, forage categories available were significantly different (F3 4 = 124.9, P < 0.05) during the wet and dry seasons. In HADCHA, graminoids were the most frequently available foraged categories of common warthogs during the wet season (88.3% ± 5.74) and during the dry season (90.9% ± 4.74) (Fig.4).

Herbs formed 9%±0.28 during the wet and 9.1%±0.89 during the dry season. Shrubs and climbers were the less available foraged categories during the wet and dry seasons. Therefore, forage categories available were significantly different (F3, 4 = 137.4, P < 0.05) between the wet and dry seasons. Conversely, the two study areas did not show significant variation ($\chi 2 = 0.43$, df = 1, P >0.05) in the available foraged categories.

Seasonal forage availability of 24 species, which contributed $\geq 1\%$ in the diet of common warthogs during the wet and dry seasons were identified in GCHA (Fig.5). Ten foraged species were available during both seasons, seven plant species were available during the wet season and the other seven forage species were available only during the dry season. The top five forage species *C. nlemfuensis* (18.6%), *H. rufa* (17.55%), *H. hirta* (15.1%), *C. dactylon* (13.3%), and *D. abyssinica* (5.1%) covered 69.65% of the available forages to common warthogs during both seasons. The proportion of seasonal availability of *C. nlemfuensis* (γ 2 = 0.34, df =

1, P > 0.05), H. rufa ($\chi 2 = 0.23$, df = 1, P > 0.05), H. hirta ($\chi 2 = 0.39$, df = 1, P > 0.05), C. dactylon ($\chi 2 = 0.38$, df = 1, P > 0.05), and D. abyssinica ($\chi 2 = 0.06$, df = 1, P > 0.05) were not significantly different during the wet and dry seasons.

In HADCHA, 28 seasonally available forage species, which contributed $\geq 1\%$ in the diet of common warthog during the wet and dry seasons were identified (Fig. 6). Twelve forage species were available during both seasons, nine species were available only during the wet season and seven species were accessible only during the dry season. The top five forage species Eragrostis spp (15%), H. rufa (14.1%), C. nlemfuensis (13.65%), H. hirta (12.65%), and C. dactylon (12.05%), accounted for 67.45% of the available forage during both seasons. The seasonal availability during the wet and the dry seasons of *Eragrostis* spp ($\chi 2 = 0.003$, df = 1, P > 0.05), H. rufa $(\gamma 2 = 0.029, df = 1, P > 0.05), C. nlemfuensis (\gamma 2 = 0.029, df = 1, P > 0.05)$ 0.006, df = 1, P > 0.05), H. hirta (χ 2 = 0.029, df = 1, P > 0.05), and C. dactylon ($\chi 2 = 0.002$, df = 1, P > 0.05), were not significantly different.

The top four seasonal availability proportion forage species of both study areas showed similarity in *C. nlemfuensis*, *H. rufa*, *H. hirta* and *C. dactylon*, but differed by *Eragrostis* spp and *D. abyssinica*. *Eragrostis* spp was one of the most available forage species in HADCHA, whereas *D. abyssinica* was the more available forage species in GCHA. Moreover, the two study areas were not significantly different (χ 2 = 1.12 df = 1, P > 0.05) in the seasonal availability proportion of forage species of common warthogs.

In GCHA, the mean proportion of fecal carbon (FC) content of common warthog was 23.5% during the wet season and 23.1%) during the dry season. Hence, they did not show significant difference (F1 3 = 0.027, P > 0.05). Likewise, in HADCHA the mean proportion of fecal carbon content was 25.04% during the wet season and 25.62% during the dry season. Hence, they revealed insignificant variation (F1 3 = 0.022, P > 0.05) (Fig. 7). Therefore, the mean fecal carbon content of common warthog did not show significance difference (t = -1.01, df = 7, P>0.05) between the two study areas. On the other hand, in GCHA, mean proportion of dietary carbon (DC) content of common warthog was 8.74% during the wet season and 16.6% during the dry season. Hence, they were significantly different (F1 3 = 5.76, P < 0.05). However, in HADCHA the mean proportion of dietary carbon content was 15.06% during the wet season and 16.52% during the dry season and they were insignificantly different (F1 3 = 0.033 P > 0.05) (Fig. 7). On the other hand, the mean fecal carbon content of common warthog did not reveal significance difference (t = -0.75, df = 7, P>0.05) between the two study areas. Moreover, the mean proportion of fecal and dietary carbon contents of common warthog showed considerable variation (F1 14 = 19.44, P <0.05) and negatively correlated (Spearman r = -0.17; P>0.05; N = 16) in GCHA and HADCHA.

The mean proportion of fecal nitrogen (FN) contents of common warthog was 13.29 % during the wet season and 12.64% during the dry season. However, they were not significantly different (F1 3 = 0.56, P > 0.05). In HADCHA, the mean proportion of fecal nitrogen content was 13.66% during the wet season and 12.67% during the dry season. Hence, they showed insignificant variation (F1 3 = 1.37, P <0.05) (Fig. 8). However, the mean fecal nitrogen contents of common warthog did not show significant variation (t = -0.39, df = 7, P>0.05) between the two study areas. On the other hand, in GCHA, the mean proportion of dietary nitrogen (DN) content of common warthog was 11.6% during the wet season and 9.11% during the dry season. They revealed significant difference (F1 3 = 7.58, P <0.05). Similarly, in HADCHA the mean proportion of dietary nitrogen content was 10.5% during the wet and 9.86 % during the dry season. But they revealed insignificant variation (F1 3 = 0.78 P > 0.05) (Fig.8). The mean fecal nitrogen contents of common warthog did not show significant difference (t = 0.22, df = 7, P>0.05) between GCHA and HADCHA. Moreover, the mean proportion of fecal and dietary nitrogen contents of the animal showed considerable disparity (F1 15 = 35.02, P <0.05) and positively correlated (Spearman r = 0.31; P>0.05; N = 16) in both study areas.

Fecal phosphorous (FP) contents of common warthogs was found more in GCHA (1369.7 mg/100g± 911.22) than in HADCHA (1311 mg/100g ± 1221.6). Nevertheless, they did not show significance difference (F1 3 = 0.52 P, > 0.05). On the other hand, dietary phosphorous (DP) content consumed warthogs attributed more in GCHA (1489.2 mg/100g± 1.762) and less in HADCHA (1312 mg/100g ± 490) (Fig. 9). However, they revealed insignificant differences (F1 3 = 0.279, P > 0.05). The seasonal difference in the mean fecal and dietary phosphorous contents of common warthogs was not significant (t = -0.39, df = 7, P>0.05) but the fecal and dietary phosphorous contents were highly correlated (Spearman r = 0.916; P>0.05; N = 16) in both study areas.

The mean proportion of fecal crude protein (FCP) content was 85.37% during the wet and 79% the dry seasons in GCHA. Hence, they were significantly different (F1 3 = 5.01, P < 0.05). In HADCHA, seasonal mean proportion of FCP content was 83.05% during the wet and 79% during the dry seasons and showed insignificant variation (F1 3 = 0.56, P > 0.05) (Fig. 10). The difference in the mean FCP contents between the two study areas was not significant (t = 0.39, df = 7, P>0.05). On the other hand, in GCHA the mean proportions of dietary crude protein (DCP) content of common warthog was 65.4% during the wet and 61.6% during the dry seasons and revealed insignificant differences (F1 3 = 0.78, P > 0.05). However, in HADCHA, the mean proportion of DCP content was 72.52% during it was the wet and 56% during the dry season and showed significant difference (F1 3 = 7.57, P <0.05) (Fig. 10). Therefore, the mean DCP content of common warthogs was insignificantly different (t = -0.22,df = 7, P>0.05) between the two study areas. Furthermore, the mean proportion of FCP and DCP contents of the animal showed significant differences (F1 15 = 35.09, P < 0.05) and negatively correlated (Spearman r = -0.242; P>0.05; N = 16) in both study areas.

Neutral detergent fiber (NDF) content of feces of common warthogs was higher in HADCHA (74.28 \pm 3.92) than in GCHA (71.01 \pm 0.12) and revealed significant variation (F1 3 = 5.27, P <0.05). On the other hand, NDF content of forage energy consumed by the animals attributed less from GCHA (69.93 \pm 4.47) than from HADCHA (71.58 \pm 13.62) (Table.1). However, they revealed insignificant differences (F1 3 = 0.299, P >0.05). The seasonal difference in the mean NDF content of feces and forage energy utilized by common warthogs were not significantly different (t = 1.09, df = 7, P>0.05), but the NDF contents of feces and forage energy were highly correlated (Spearman r = 0.767; P>0.05; N = 8).

Acid detergent fiber (ADF) content of feces of common warthogs was higher in HADCHA (59.68 ± 0.03) than in GCHA (55.61 ± 4.96) and showed significant difference (F1 3 = 6.65 P <0.05). However, ADF content of forage energy consumed by these animals was higher in GCHA (48.37 ± 17.28) than in HADCHA (47.53 ± 15.34) and showed insignificant variation (F1 3 = 0.04, P > 0.05) (Table 1). Seasonal difference in the mean ADF content of feces and forage energy utilized by common warthogs were significantly different (t = 4.53, df = 7, P>0.05). On the other hand, the ADF contents feces and forage energy consumed by common warthogs were highly

correlated (Spearman r = 0.75; P>0.05; N = 8). However, there were no seasonal significant differences between the fecal dry matter and forage dry matter contents of common warthog percentage (F1 7 = 0.28, P > 0.05) of the two study areas. The seasonal percentage of fecal organic matter and forage organic matter of the two study areas were significantly different (F1 7 = 103.9, P <0.05) (Table 1).

Common warthogs are selective in their forage in a savanna landscape to realize their nutrition requirements and go for patches of high quality grasses, particularly when there is nutrient shortage during the dry season (Treydte, 2004). Hence, warthogs are recognized as committed grazers (White, 2010; Hjertlöv, 2015) because they have unique multi-cusped hypsodont third molar and reduced premolars that are well Adapt to grazing (Mgqatsa, 2010). In the former rangeland of Mkwaja North of Tanzania, 77% common warthog diet was covered by grass and in the former Saadani Game Reserve, Tanzania, grass contributed 98 % of the animals diet (Treydte, 2004). On the other hand, grasses formed 87.4% of common warthog diet in the Addo Elephant National Park of South Africa. Other study also found 64% of common warthog diets were contributed by grass species in Kichwa Tembo, Kenya (Hjertlöv, 2015). Similarly, in the present study, the annual diet composition of common warthog constituted by grass was comparable in GCHA and in HADCHA. They also include some browse such as woody shrubs, herbs and fallen fruits in their diet (Treydte et al., 2006; Mgqatsa, 2010). Other study also observed common warthog consumed herbs in Mount Meru Game Reserve, Tanzania (Kahana et al., 2013), in Kichwa Tembo, Kenya herb (Hjertlöv, 2015) and in the Addo Elephant National Park of South Africa as diet of the animal (Mgqatsa, 2010). In the present study, herbs contributed common warthog annual diet in GCHA and HADCHA

Availability of palatable forage species has an important effect on the diet preference of animals and permit animals to select a wider range of plant species with little or no risk of nutritional stress (Zweifel–Schielly *et al.*, 2012). Decrease in the availability of forage species results in the use of less desirable forage species (Anderson *et al.*, 2010), which elevate metabolic costs of locomotion and limits survivorship of the animal (Hanley and McKendrick, 1983). In the present study, comparable seasonally available forage species, which contributed ≥1% in the diet of common warthog were identified in GCHA and HADCHA during the wet and

dry seasons. Cyodon nlemfuensis, H. rufa, H. hirta and C. dactylon are the most available forage species of the study areas. On the other hand, Eragrostis spp in HADCHA and D. Abyssinica in GCHA were the most available forage species during the wet and dry seasons. Cyodon dactylon and Eragrostis spp were also particularly abundant in the diet of common warthogs in Mkwaja Ranch in Tanzanian (Treydte et al., 2006).

Nutrition directly affects life-history traits, such as survival, fertility, body mass, litter size, longevity, as well as demography and population dynamics of ungulates (Wrench et al., 1997; Owen-Smith, 2002; Gil-Jiménez et al., 2015; Holá, 2016). Hence, determination of nutritional status of animals is significant for wildlife population and habitat management (Wrench et al., 1997; Treydte et al., 2006). Forage quality estimates through fecal analyses and plant materials collected from feeding quadrats were used to determine nutritional status of animals (Holecheck, 1982; Wrench et al., 1997). Therefore, C, P, N, crude protein (CP), fiber content; neutral detergent fiber (NDF) and acid detergent fiber (ADF) in the feces and diet of common warthogs have been used to track changes in diet quality (Treydte et al., 2006; Codron et al., 2007). In African savannas, common warthogs forage grasses (C4 plants) and the non-grass component (C3 plants) to obtain organic carbon (Treydte, 2004; Treydte et al., 2006). In the present study, the amount of dietary carbon that common warthogs consumed was less in GCHA and high in HADCHA during the wet season. On the other hand, the amount of fecal carbon of common warthogs calibrated in GCHA and HADCHA was consistent. Fecal and dietary carbon of these animals was negatively correlated.

This might be due to microhistological analyses of feces provided the most detailed information about the plant species that common warthog consumed than plant materials collected from feeding quadrats. The finding of both study areas was consistent with Treydte *et al.*, (2006), who reported (fecal carbon = 26%) in Mkwaja Ranch in Tanzania. On the other hand, dietary carbon of GCHA was comparable with Treydte *et al.*, (2006), who measured (dietary carbon = 9.8%) and Clauss *et al.*, (2008) who calibrated (dietary carbon = 9.3%) for captive common warthog at Rotterdam Zoo.

Hence, fecal carbon calibrated showed that the animals did not suffer from shortage of dietary carbon in both study areas (Treydte, 2004).

35°56'15"E 36°0'0"E 36°3'45"E 36°7'30"E AFRICA Haru Chewaka Nole Kaba ETHIOPIA Mekko Woreda Dabo Hana 1 cm = 274 km LEGEND Town Road Dega Main River Tributries River Study Sites Study area Boundary

Fig.1 Location map of Gassi Controlled Hunting Area.

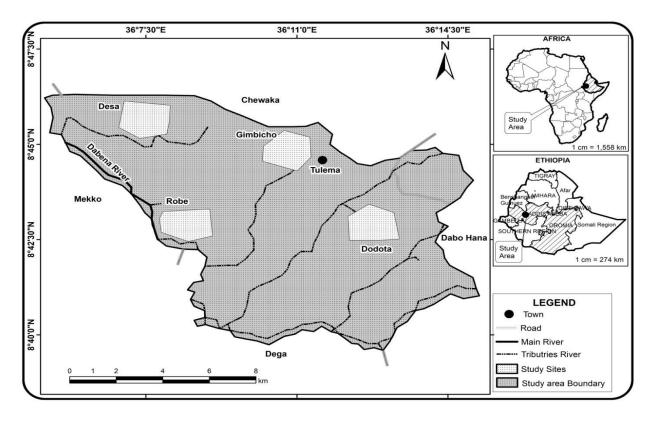


Figure.3 Forage categories (%) available in GCHA during the wet and dry seasons.

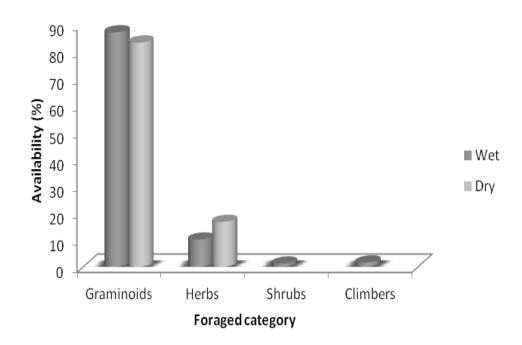
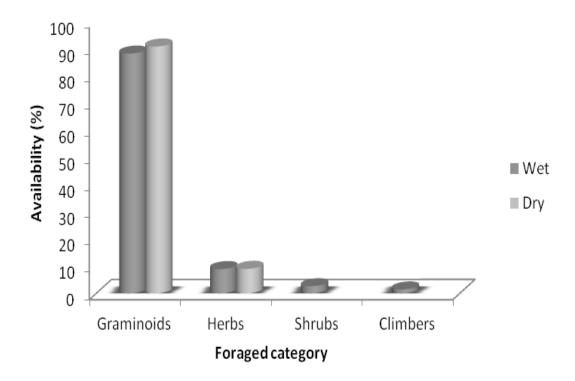
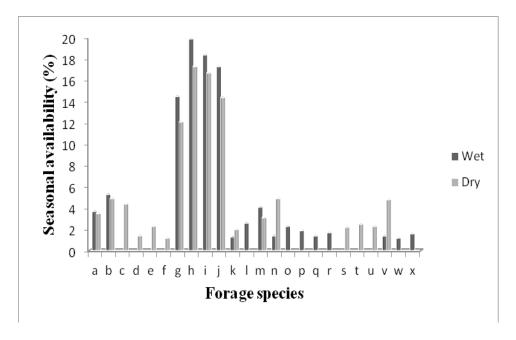
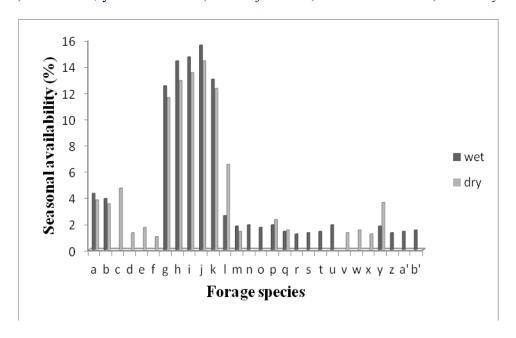
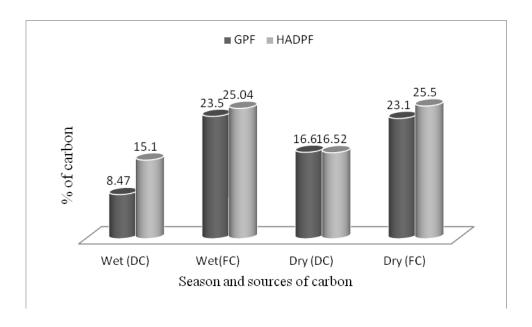
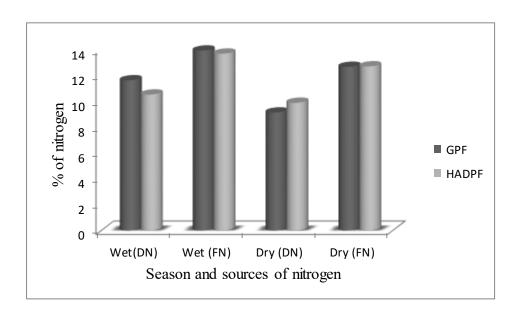



Figure.4 Forage categories (%) available in HADCHA during the wet and dry seasons.

Figure.5 Seasonal changes in the availability (%) of forage species recorded in more than 5 quadrats that contributed ≥1% in the diet of common warthog either during the wet or dry seasons in GCHA (a = *C. fischerianus*, b = *D. abyssinica*, c = *E. tef*, d = *Z. mays*, e = *S. bicolor*, f = *E. coracana*, g = *C. dactylon*, h = *C. nlemfuensis*, i = *H. rufa*, j = *H. hirta*, k = *P. maximum*, l = *P. nubicwn*, m = *A.abyssinicus*, n = *B. ethiopum*, o = *T. brownie*, p = *C. benghalensis*, q = *D. steudneri*, r = *S. sesban*, s = *F. sycomorus*, t = *F. sur*, u = *F. vasta*, v = *S. mucronata*, w = *D. africanum*, x = *S.abyssinica*).


Figure.6 Seasonal changes in the availability (%) of forage species recorded from more than 5 quadrats and contributed ≥1% in the diet of common warthog either during the wet or dry seasons in HADCHA (a = C. fischerianus, b = D. abyssinica, c = E. tef, d = Z. mays, e = S. bicolor, f = E. coracana, g = C. dactylon, h = C. nlemfuensis, i = H. rufa, j = Eragrostis spp, k = H.hirta, 1 = H.varibilis, m = P. maximum, n = P. nubicwn, o = S. poiretiana, p = A.abyssinicus, q = B. ethiopum, r = T. brownie, s = C. benghalensis, t = D. steudneri, = u. sesban, v = F. sycomorus, w = F. sur, x = F. vasta, y = S. mucronata, z = D. africanum, a' = H. macranthus, b' = S.abyssinica)

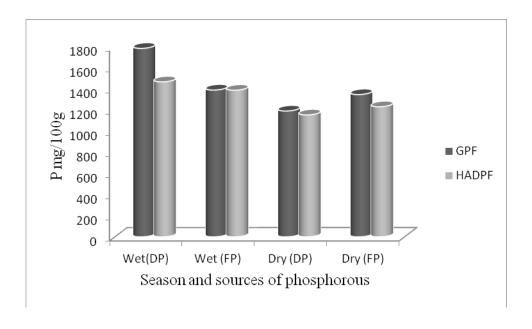

Figure.7 Mean seasonal fecal carbon (FC) and dietary carbon (DC) contents of common warthogs in GCHA and HADCHA

Figure.8 Mean seasonal fecal nitrogen (FN) and dietary nitrogen (DN) contents of common warthogs in GCHA and HADCHA

Figure.9 Mean seasonal fecal phosphorous (FP) and dietary phosphorous (DP) contents of common warthogs in GCHA and HADCHA.

Figure.10 Mean seasonal fecal crude protein (FCP) and dietary crude protein (DCP) contents of common warthogs in GCHA and HADCHA

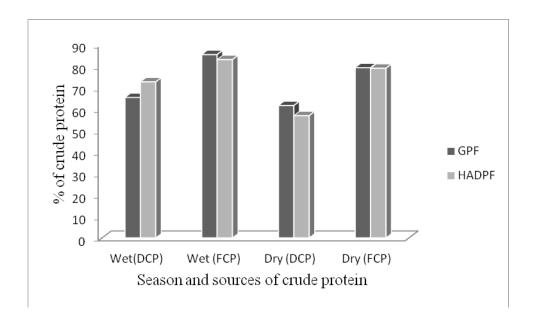


Table.1 Fibers measured from feces and diet of common warthog in GCHA and HADCHA

	GCHA		HADCHA	
Nutrients	Wet	Dry	Wet	Dry
Fecal				
DM%	92.83	92.75	92.32	92.11
OM%	76.16	70.64	75.03	75.12
NDF%	71.26	70.77	75.68	72.88
ADF%	54.03	57.18	59.56	59.8
Forage				
DM%	92.23	92.92	92.29	92.02
OM%	90.46	89.26	90.57	87
NDF%	71.43	68.44	74.19	68.97
ADF%	45.43	51.31	44.76	50.3

DM = dry matter, OM = organic carbon, NDF = neutral detergent fiber, ADF = acid detergent fiber

Appendix 1: Table.1 Forage species (mean \pm SE) that contributed \geq 1% to the diet of common warthog either during the wet or dry season in GCHA.

Family	Forage species	Wet%	Dry%	Mean
Graminoids = 13				
Cyperaceae	Cyperus fischerianus	3.7	3.5	3.6
Poaceae	Digitaria abyssinica	5.3	4.9	5.1
Poaceae	Eragrostis tef		4.4	2.2
Poaceae	Zea mays	0	1.4	0.7
Poaceae	Sorghum bicolor	0	2.3	1.15
Poaceae	Eleusine coracana	0	1.2	0.6
Poaceae	Cynodon dactylon	14.5	12.1	13.3
Poaceae	Cynodon nlemfuensis	19.9	17.3	18.6
Poaceae	Hyparrhenia rufa	18.4	16.7	17.55
Poaceae	Hyparrhenia hirta	17.3	14.4	15.85
Poaceae	Panicum maximum	1.3	2	1.65
Poaceae	Pennisctum nubicwn	2.6	0	1.3
Poaceae	Andropogon abyssinicus	4.1	3.1	3.6
Herbs = 9				
Arecaceae	Borassusa ethiopum	1.4	4.9	3.15
Combretaceae	Terminalia brownii	2.3	0	1.15
Commelinaceae	Commelina benghalensis	1.9	0	0.95
Dracaenaceae	Dracaena steudneri	1.4	0	0.7
Fabaceae	Sesbania sesban	1.7	0	0.85
Moraceae	Ficus sycomorus	0	2.2	1.1
Moraceae	Ficus sur(F. capensis	0	2.5	1.25
Moraceae	Ficus vasta			
Salicaceae	Salix mucronata	1.4	4.8	3.1
Shrub = 1				
Apiaceae	Diplolophium africanum	1.2	0	0.6
Climber = 1	Stephania abyssinica	1.6	0	0.8
	Total	100	100	100

Ungulates need continuous intake of dietary nitrogen (Holá, 2016). Dietary nitrogen is the most limiting nutrient compared to other food components, such as fat, especially during critical periods of the animal life cycle, such as pregnancy, lactating and fetal development for grazers (Grant et al., 2000; Gil-Jiménez et al., 2015). Dietary nitrogen is also the most common constituent of feces used to assess diet quality of foraging animals (Holechek, 1982; Kamler and Homolka, 2005; Monteith et al., 2014; Rayn, 2016). Hence, in the present study, common warthogs consumed more mean proportion of dietary nitrogen during the wet season than during the dry seasons in GCHA. This could be due to in semi-arid savanna ecosystem, large proportions of available forage species become lignified and hard to digest during the dry season than the during wet season. Thus, the protein content of these forage species declines below 1.1% and fail to provide sufficient dietary protein (Mphinyane et al., 2015; Rayn, 2016). The variation in dietary nitrogen is also closely related to phenology of the forage species (Jianzhang et al., 1999). During the present study, common warthogs defecated more mean proportion of fecal nitrogen during the wet season than during the dry season in HADCHA. This might be due to fecal nitrogen was likely related to the consumption of forage species and season. Hence, it is the main factor which affects their availability and quality (Mphinyane et al., 2015). The mean fecal nitrogen calibrated in GCHA and HADCHA was comparable during the dry season. The finding of the present study was strongly conflicted with Treydte et al. (2006), who measured lower fecal nitrogen (1.5%). On other hand, in the present study, fecal nitrogen defecated by common warthog was higher than dietary nitrogen utilized by warthogs in both study areas. This might be due to salt licking habit which supplemented the fecal nitrogen of the common warthogs. On the other hand, high fecal nitrogen calibrated indicated that the animals did not suffer from shortage of dietary nitrogen in both study areas (Treydte, 2004). However, the fecal and dietary nitrogen of the study areas were positively correlated. Several studies also reported positive linear relationship existed between fecal and dietary nitrogen in feeding activity of ungulates (Holecheck, 1982; Irwin et al., 1993; Kamler and Homolka, 2005; Jean et al., 2014; Holá, 2016).

Dietary phosphorousis essential for bacterial degradation of dietary fibers (Metzler and Mosenthin, 2008; dos Passos, 2014). It is also important for grazing ungulates reproductive process and may even restrict animal distributions (Grant *et al.*, 2000). Dietary phosphorous was predicted from forage species of

animals (Wrench et al., 1997; Augustine, 2004; Codron et al., 2005). In the present study, fecal phosphorous concentration of common warthog varied between 1311 mg/100g and 1489.2 mg/100g. This showed that common warthog population of both study areas suffered from shortage of dietary phosphorous. This restricts reproductive process and animal distribution over long period of feeding. Because fecal phosphorous concentration 1900 mg/100g to 2000 mg/100g indicated that dietary phosphorous minimum threshold level animal consumed (Grant et al., 2000). This might be lead to low reproductive rates and population decline of these animals in Dabena Valley Forest. On the other hand, dietary phosphorous utilized by common warthogs and fecal phosphorous concentration defecated did not show significant variation between seasons and the study areas.

Ungulates require dietary crude protein (DCP) to maintain their body weight (Mgqasta, 2010). In the present study, seasonal mean proportion of DCP foraged was higher during the wet season than during the dry season in HADCHA. This could be due to the decline in quality and quantities of foods during the dry season (Mgqasta, 2010; Thorp, 2012). The result of the present study contradicted with Clauss et al., (2008), who measured smaller DCP (period 1 = 14.6%, period 2 = 15%) for captive common warthogs at Rotterdam Zoo. On the other hand, during the present study, seasonal mean proportion of fecal crude protein (FCP) content of common warthog was higher during the wet than during the dry season in GCHA. The finding of the present study was similar with Clauss et al. (2008), who measured FCP (period 1 = 82%, period 2 = 79%). The mean proportion of FCP was higher than DCP common warthogs ingested in both study areas and they were negatively correlated. This might be due to common warthog additionally ingested soil licks and wood shavings (Clauss et al., 2008).

Among common warthogs and other wild pigs, dietary fiber is an inevitable component of their diets (Metzler and Mosenthin, 2008), and important for intestinal health (Mahenya, 2016). They use microbes in their cecum and colon to extract energy from a fibrous diet (Zervanos, 2009). Soluble dietary fiber may promote digestive functions and absorption of nutrients (Clauss *et al.*, 2008; Zijlstra *et al.*, 2015). Insoluble fiber diets also improve gut morphology by increasing villi length and stimulating mucosal enzyme activity (Metzler and Mosenthin, 2008). Likewise, common warthogs are more efficient than other wild suids and peccaries in terms of

fiber digestion (Clauss et al., 2008). Neutral detergent fiber (NDF) content of feces used as a predictor for digestible energy of the diet and NDF might be used to identify the most digestible plant species (Jean et al., 2014). Hence, in the present study, NDF content of forage energy utilized by common warthog was consistent in GCHA and HADCHA. The finding of the present study was not far from the threshold value calibrated (60-65%) for grazers (Kamler and Homolka, 2005; Monteith et al., 2014). Therefore, common warthog utilized reasonable forage energy of NDF in the study areas (Metzler and Mosenthin, 2008). However, the finding of the present study was contradicted with Clauss et al. (2008), who measured forage energy of NDF smaller during period 1 = 20.6% and NDF during period 2 = 21% for captive common warthogs at Rotterdam Zoo. On the other hand, common warthog NDF content feces was comparable in HADCHA and GCHA. The finding of the present study was little higher than the value measured for NDF content of feces by Clauss et al., (2008), 66% and 63% during different periods.

Acid detergent fiber (ADF) is the least digestible fiber in most herbivores (Monteith et al., 2014; Holá, 2016). It has long been used to estimate energy content of forage species (Zweifel-Schielly et al., 2012). Hence, ADF is used as a predictor of forage digestibility as NDF is an estimator of forage intake of animals (Monteith et al., 2014). The upper threshold level of ADF content of forage is 50% for grazers (Holá, 2016). Likewise, the forage content of ADF that common warthog utilized was consistent in GCHA and HADCHA. Hence, forage contents of ADF, common warthog consumed in both study areas showed modest digestibility (Kamler and Homolka, 2005). The finding of the present study was very far from Clauss et al., (2008), who calibrated the feces content of ADF 11.6% and 11.9% during period 1 and 2, respectively. Moreover, ADF content of feces the animal defecated was higher in GCHA and less in HADCHA. This finding was very close to the finding of Clauss et al., (2008), who measured 62% and 59% ADF content of feces during period 1 and 2, respectively.

In conclusion, diet analysis and microhistological study indicated that they common warthogs population were not suffered from poor nutritional quality intake except dietary phosphorous concentration in both study areas. Common warthog populations are currently foraged dietary phosphorous concentration below the minimum threshold level, which gradually affects the fertility and population size of the animal in the study areas.

Common warthogs are highly efficient in dietary fibers (ADF and NDF) digestion. On the other hand, there were significant variations between dietary C, N, CP, and fecal contents of C, N, and CP because of salt licking behavior of common warthog's population.

Data statement

The research data is confidential.

Acknowledgment

We are grateful to Addis Ababa University, Department of Zoological Sciences for financial support from thematic project. We are also indebted to Oromia Forest and Wildlife Enterprise for the permit provided to conduct this research in Dabena Valley Forest. We also thank our respondents and field assistants for their willingness and support during the period of data collection. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author Contributions

Professor Afework Bekele is the primary mentor of the research work and Dr. Habte Jebessa is the primary field mentor during data collection periods

Conflict of interest

We declare that our manuscript is free of conflict of interest.

References

Ahrestani, F. S., Heitkönig, I. M. A. and Prins, H. H. T. 2012. Diet and habitat–niche relationships within an assemblage of large herbivores in a seasonal tropical forest. *J. Trop. Ecol.* 28: 385–394.

Ali, Y. S. A. 2014. The impact of soil erosion in the upper Blue Nile on downstream reservoir sedimentation. Ph D thesis submitted to Delft University of Technology and the acAMemic board of the UNESCO-the Institute for water education. Pp. 1–190.

Anderson, T. M., Hopcraft, J. G. C., Eby, S., Ritchie, M., Grace, J. B. and Olff, H. 2010. Landscape–scale analyses suggest both nutrient and antipredator AMvantages to Serengeti herbivore hotspots. *Ecol.* 91: 1519–1529.

- Augustine, D. J. 2004. Influence of cattle management on habitat selection by impala on central Kenyan rangeland. *J. Wildl. Manage.* 68: 916–923.
- Awulachew, S. B., Yilma, A. D., Loulseged, M., Loiskandl, W., Ayana, M. and Alamirew, T. 2007. Water resources and irrigation development in Ethiopia. *I. Wat. Manag. Inst.* 123: 1–78.
- Bekhuis, P. D. B. M., De Jong, C. B. and Prins, H. H. T. 2008. Diet selection and density estimates of forest buffalo in Campo–Ma'an National Park, Cameroon. *Afr. J. Ecol.* 46: 668–675.
- Betrie, G. D., Mohaded, Y. A., van Griensven, A. and Srinivasan, R. 2011. Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrol. *Eart. Syst. Sci.* 15: 807–818.
- Borger, L., Franconi, N., Ferretti, F., Meschi, F., Michele, G., Gantz, A. and Coulson, T. 2006. An integrated approach to identify spatiotemporal and individual–level determinants of animal home range size. *Am. Nat.* 168: 471–485.
- Bullock, J. M. 2006. Plants. In: *Ecological Census Techniques: A handbook.* 2nd ed., pp. 189–213, (Sutherland, W. J. ed). Cambridge University Press, Cambridge, UK.
- Butt, B. and Turner, M. D. 2012. Clarifying competition: the case of wildlife and pastoral livestock in East Africa. *Pastoralis. Resear. Polic. Prac.* 2: 1–15.
- Buys, D. 1990. Food selection by eland in the western Transvaal. S. Afr.J. Wild. Res. 20: 16–20.
- Clauss, M; Nijboer, J.; Loermans, J. H. M.; Roth, T.; van der Kuilen, J.; Beynen, A. C. 2008. Comparative digestion studies in wild suids at Rotterdam Zoo. *Zoo Biol.* 27: 305–319.
- Clauss, M., Streich, W. J., Schwarm, A., Ortmann, S. and Hummel, J. 2007. The relationship of food intake and ingesta passage predicts feeding ecology in two different mega herbivore groups. *Oikos* 116: 209–216.
- Codron, D., Codron, J., Sponheimer, M. and Clauss, M. 2016. Within–population isotopic niche variability in savanna mammals: disparity between carnivores and herbivores. *Fron. Ecol. Evol.* 4: 1–16.
- Codron, D., Codron, J., Sponheimer, M., Julia, A., Lee–Thorp, T., Robinson, C., Grant, C., and de Ruiter, D. 2005. Assessing diet in savanna herbivores using stable carbon isotoperatios of feces. *Koed.* 48: 115–124.
- Codron, D., Lee-Thorp, J. A., Sponheimer, M., Codron, J., de Ruiter, D. and Brink, J. S. 2007. Significance of diet type and diet quality for

- ecological diversity of African ungulates. *J. Anim. ecol.* 76: 526–537.
- Cromsigt, J. P. G. M., Prins, H. H. T., Olff, H., and Patterson, B. 2009. Habitat heterogeneity as a driver of ungulate diversity and distribution patterns: interaction of body mass and digestive strategy. *Diver. Distr.* 15: 513–522.
- Dearing, M. D., Mangione, A. M. and Karasov, W. H. (2000). Diet breadth of mammalian herbivores: nutrient versus detoxification constraints. *Oecol*. 123: 397–405.
- Dos Passos, A. A. 2014. Application of feed enzymes in pig nutrition. PhD thesis submitted to North Carolina State University, animal science and poultry science and nutrition. Pp. 1–150.
- Edossa, A., Bekele, A., Debella, H.J., 2020. Social organization and activity patterns of common warthog (*Phacochoerus africanus* Gmelin, 1788) in Dabena Valley Forest, Western Ethiopia. Ecol. Evolut. Biol. 5, 173–181 doi: 10.11648/j.eeb.20200504.18.
- Edossa, A., Bekele, A., Debella, H. J. 2021. Diet preferences of common warthogs (*Phacochoerus africanus*) in Gassi and Haro Aba Diko controlled hunting areas, Western Ethiopia. Glob. Ecol. Cons. 29 (2021) e01722
- Gil–Jiménez, E., Villamuelas, M., Serrano, E., Delibes, M. and Fernández, N. 2015. Fecal nitrogen concentration as a nutritional quality indicator for European rabbit ecological studies. *Plos one* 10: 1–14.
- Grant, C. C., Peel, M. J. S. and van Ryssen, J. B. J. 2000. Nitrogen and phosphorus concentration in feces: an indicator of range quality as a practical adjunct to existing range evaluation methods, *Afri. J. Rang. Forag.Sci.* 17: 81–92.
- Greenwood, J. J. D. and Robinson, R. A. 2006. General Census Methods. In: *Ecological Census Techniques: A Handbook*, 2nd edn., pp. 87–185, (Sutherland, W. J., ed). Cambridge University Press, London.
- Grobler, J. H. 1983. Feeding habits of the Cape Mountain Zebra. *Koed*. 26: 159–168.
- Gutbrodt, B. 2006. Diet composition of wildebeest, waterbuck and reedbuck in relation to food quality in a moist savanna of Tanzania. Thesis in Environmental Sciences. Swiss Federal Institute of Technology; Zurich. Pp. 1–85.
- Hanley, T. A. and McKendrick, J. D. 1983. Seasonal changes in chemical composition and nutritive value of native forages in a Spruce–Hemlock Forest, Southeastern Alaska. *PNW*. 312: 1–48.

- Hjertlöv, L. 2015. Why do the common warthog *Phacochoerus africanus* stay at KichwaTembo.*Skar*.620: 1–22.
- Hobbs, N. T. 1996. Modification of ecosystems by ungulates. *J. Wildl. Manage*.60: 695–713.
- Holá, M. 2016. *Towards a better understanding of ungulate diets: a methodological approach.* PhD thesis submitted to Czech University of life sciences Prague faculty of forestry and wood sciences. Pp. 1–93.
- Holechek, J. L. 1982. Sample preparation techniques for microhistological analysis. *J. Rang. Manag.* 35: 267–268.
- Jean, P. O., Bradley, R. L., Giroux, M. A., Tremblay, J. P. and Co^te, S. D. 2014. Near infrared spectroscopy and fecal chemistry as predictors of the diet composition of white-tailed deer. *Rangelan. Ecol. Manag.* 67: 154–159.
- Jianzhang, M., Junsheng. L. and Mingbo, G. 1999. Nitrogen and fiber concentration in rumen contents and feces contents of Mongolian gazelles. *J. Fores. Res.* 10: 103–106.
- Kahana, L. W., Malan, G. and Sylvina, T. J. 2013. Glade use by common warthog, African buffalo, mountain reedbuck and bushbuck in Mount Meru Game Reserve, Tanzania. *I. J. Biodivers. Conserv.* 5: 768–686.
- Kartzinel, T. R., Chena, P. A., Coverdalea, T. C., Ericksonb, D. I., Kressb, W. J., Kuzminab, M. L., Rubensteina, D. I., Wangd, W., and Pringlea, R. M. 2015. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores.

 Pa. 1–6.

 www.pnas.org/cgi/doi/10.1073/pnas.150328311
 2
- Krebs, C. J. 2006. Mammals. In: *Ecological cense techniques hand book* 2nd ed., pp. 351–367, (Sutherland, W. J. ed.). Cambridge University press.
- Lyons, R. K., Machen, R. and Forbes, T. D. A. 1999. Why range forage quality changes. *Agri. Lif. Exten.* 99: 1–8.
- Macandza, A. V., Owen–Smith, N. and Cross, P. C. 2004. Forage selection by African buffalo in the late dry season in two landscapes. *S. Afr. J. Wildl. Res.* 34: 113–121.
- Magome, H., Cain, J. W., Owen–Smith, N. and Henley, S. R. 2008. Forage selection of sableantelope in Pilanesberg Wildlife Reserve, South Africa. *S. Afr. J. Wildl. Res.* 38: 35–41.
- Mahenya, O. J. 2016. Browsing by giraffe in heterogeneous savanna. PhD thesis submitted to

- Inland Norway University, faculty of applied ecology and agricultural sciences. Pp. 1–62.
- Merid, F 2002. National Nile Basin water quality monitoring baseline report for Ethiopia: Nile Basin initiative trans boundary environmental action project. Pp. 1–82.
- Metcalfe, D. B., Asner, G. P., Martin, R. E., Espejo, J. E. S., Huasco, W. H., Amezquita, F. F. F., Carranza–Jimenez, L., Cabrera, D. F. G., Baca, L. D., Sinca, F., Quispe, L. P. H., Ivonne Taype, I. A., Mora, L. E., Davila, A. R., Solorzano, M. M., Vilca, B. L. P., Roman, J. M. L., Bustios, P. C. G., Revilla, N. S., Tupayachi, R., Girardin, C. A. J., Doughty, C E., and Malhi, Y. 2014. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. *Ecol. Lett.* 17: 324–332.
- Metzler, B. U. and Mosenthin, R. 2008. A review of interactions between dietary fiber and the gastrointestinal microbiota and their consequences on intestinal phosphorus metabolism in growing pigs. *Asian–Aust. J. Anim. Sci.* 21: 603–615.
- Mgqatsa, N. 2010. Diet and population trends of warthog in the AddoElephant National Park.

 M.Sc. thesis submitted to Nelson Mandela Metropolitan University, Port Elizabeth, South Africa. Pp. 1–85.
- Monteith, K. B., Monteith, K. L., Bowyer, R. T., Leslie D. M, and Jenks, J. A. 2014. Reproductive effects on fecal nitrogen as an index of diet quality: an experimental assessment. *J. Mamm.* 95: 301–310.
- Mphinyane, W. N., Tacheba, G. and Makore, J. 2015. Seasonal diet preference of cattle, sheep and goats grazing on the communal grazing rangeland in the Central Woreda of Botswana. *Afr. J. Agric. Res.* 29: 2791–2803.
- Muposhi, V. K., Chanyandura, A., Gandiwa, E., Muvengwi, J., Muboko, N., Taru, P. and Kupika, O. L. 2014. Post–release monitoring of diet profile and diet quality of reintroduced African buffalo (Syncerus caffer) in Umfurudzi Park, Zimbabwe. *Trop. Conserv. Sci.* 7: 440–456.
- Owen–Smith, N. 2002. Factors influencing the consumption of plant products by large herbivores In: *Ecology of Tropical Savannas*, pp 359–404, (Huntley, B.J. and Walker, B. H eds.). Springer–Verlag, Berlin.
- Owen–Smith, N., Fryxell, J. M. and Merrill, E. H. 2010. Foraging theory upscaled: the behavioral

- ecology of herbivore movement *Phil. Trans. R. Soc.* 365: 2267–2278.
- Rayn, S. J. 2016. Spatial ecology of African buffalo and their resources in a savanna ecosystem. PhD thesis submitted to University of California Environmental Science, Policy, and Management, Berkeley. Pp. 1–165.
- Stewart, D. R. M. 1967. Analysis of plant epidermis in feces: a technique for studying the food preferences of grazing herbivores. *J. Appl. Ecol.* 4: 83–111.
- Thorp, P. 2012. The influence of active bomas on habitat choice of the common warthog (*Phacochoerus africanus*). *Skar.* 1: 1–13.
- Treydte, A. C. 2004. Ecosystem studies on the former Mkwaja Ranch and the new Saadani National Park between 2001 and 2004. *Tanz. Wildl. Discuss.* 42: 1–20.
- Treydte, A. C., Bernasconi, S. M., Kreuzer, M. and Edwards, P. J. 2006. Diet of the common warthog (*phacochoerus africanus*) on former cattle grounds in a Tanzanian Savanna. *J. Mamm.* 87: 889–898.
- Venter, J. A. and Watson, L. H. 2008. Feeding and habitat use of buffalo (*Syncerus caffer caffer*) in

- Nama–Karoo, South Africa. S. Afr. J. Wildl. Res. 38: 42–51.
- White, A. M. 2010. A pigheaded compromise: do competition and predation explain variation in warthog groupsize? *Behav. Ecol.* 1093: 1–8.
- Wrench, J. M., Meissner, H. H. and Grant, C. C. 1997. Assessing diet quality of African ungulates from fecal analyses: the effect of forage quality, intake and herbivore species. *Koed.* 40: 125–136.
- Zervanos, S. M. 2009. Wild pig physiological ecology. In: wild pigs biology, damage, control techniques and management, pp. 145–157 (Mayer, J. J. and Brisbin, I. L. eds.). Savannah river national laboratory Aiken, South Carolina.
- Zijlstra, R. T., Jha, R., Woodward, A. D., Fouhse, J. and van Kempen, T. A. T. G. 2015. Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs. *J. Anim. Sci.* 90: 49–58.
- Zweifel–Schielly, B., Leuenberger, Y., Kreuzer, M. and Suter, W. 2012. A herbivore's food landscape: seasonal dynamics and nutritional implications of diet selection by a red deer population in contrasting Alpine habitats. *J. Zool. Lond.* 286: 68–80.

How to cite this article:

Alemayehu Edossa, Afework Bekele and Habte Jebessa Debella. 2025. Forage Availability and Nutrient Quality of Common Warthog (*Phacochoerus africanus*) in Gassi and Haro Aba Diko Controlled Areas, Western Ethiopia. *Int.J.Curr.Res.Aca.Rev.* 13(09), 145-161. doi: https://doi.org/10.20546/ijcrar.2025.1309.008